From figs trees to laboratories

[The Leaven – exploring the relationship between science and religion (cont)]

The development of yeast molecular biology can literally be used to assess the impact that the application of scientific research has had on 21st century society. Scientific researchers often describe yeast as the workhorse of eukaryotic molecular biology with many laboratories devoted to studying this single-celled organism, as much of the information derived from it can be equally applied to the study of human cells.

Most modern laboratory strains of yeast originate from one particular Saccharomyces cerevisiae strain, EM93, isolated from dried figs in Merced, California in the 1930’s by Emil Mrak. This strain turned out to be heterothallic, meaning that cells existed as two types of sterile haploids, with a single copy of each gene, that when fused together formed a fertile diploid that could perform meiosis in a similar way to that seen in human cells. Up until this point most strains studied were homothallic, this meant that all haploid cells were of the same mating type and capable of fusing together to form a fertile cell known as a zygote. The emergence of a heterothallic strain meant that the genetic stability of a culture could be placed under greater control, as it would remain haploid until the other haploid type was introduced and then through the production of mating phermones followed by cell fusion a diploid cell could be created.

Green Fluorescent reporter gene in yeast cells. Image: bio+ve

So why has yeast become such a popular organism to study molecular biology and why is this microbe chosen in favour of others microorganisms? Firstly, Saccharomyces is non-pathogenic and does not present a threat to human safety. Therefore laboratory workers do not require expensive protective equipment to practice research. Saccharomyces is also easy to contain as is not usually airborne unless transported involuntarily by animals and insects. Another reason  is the ease by which it is cultured. Yeast can be grown easily and only requires a suitable carbon source, nutrients and appropriate physical conditions to continue multiplying. Additionally, these requirements can also be used to control the rate of cell division, for instance, by altering temperature or by creating metabolic mutants. Mutants are generated either through using a mutagen or by manipulating DNA through genetic engineering. Genes involved in yeast metabolism can be mutated and then used as molecular markers. For instance if the genes for the requirement of an essential amino acid are defective then the yeast will not grow without that amino acid added to its immediate environment. If the defective gene is artificially replaced by a functional one then the yeast cell will be able to continue growing without the need for that particular amino acid. Armed with this knowledge researchers are able to introduce fragments of DNA fused to these marker or reporter genes. If the yeast is able to grow without the selected amino acid this means that the DNA of interest to the researcher has been successfully introduced into the cell. This approach has led to the characterisation of countless genes and proteins in yeast and from other organisms.

Another reason why yeast is used as a molecular model system alongside other well-known microbes, such as Escherichia coli, is because it is a eukaryote. E. coli and other bacteria are prokaryotes, in contrast to eukaryotes they only have one chromosome housed in a cell without a nucleus. In yeast cells, DNA is packaged in chromosomes stored in a nucleus in a similar way as in human cells. Yeast has 16 individual chromosomes compared to 23 in humans. Surprisingly, there are only four chromosomes in the multi-celled fruit fly Drosophila another model organism used for biological research. Yeast also has the advantage of being able to grow just as happily with one set of chromosomes, in haploid cells, as with two or more sets of chromosomes, diploid and polyploid respectively. Additionally, as yeast is a single celled organism without the complexity of cellular differentiation it can be used to study the cell-cycle at a fundamental level. It can be used to study mitosis and meiosis. Many mutations that cause human disease are introduced during meiosis. Following cell fusion or mating, two haploid cells form diploids which can produce four individual haploid cells known collectively as an ascospore. After microscopic dissection of the ascospores, researchers can study recessive mutations and the complicated exchange of genetic material during meiosis by counting the numbers of surviving progeny. The information derived from yeast studies aids the study of genes involved in tissue development and cell differentiation in higher eukaryotes, such as Drosophila. Adding to all these factors many of the biochemical and cellular functions in yeast are conserved in human cells. Yeast therefore is a simple and practical system to study the mechanism of human cell division.

Advertisements

Leaven in a molecular era.

[The Leaven – exploring the relationship between science and religion (cont)]

Not only does yeast now serve as one of the most important organisms throughout domestic history, in recent years it has also substantially contributed to biological research. The numerous molecular techniques that have evolved in yeast have allowed it to make an important contribution to a number of areas in science. Through studying various types of yeast and other microbes, scientists now know a great deal about the molecular processes involved in cell division, rapid evolution and disease.

Fortunately, individuals with skin diseases are no longer thought of as unclean and are normally treated within the community. Scientists have greater understanding of disease management and although quarantine and hygiene are still practiced they are now carried out in order to reduce disease transmission. In the majority of cases, people are not ostracised when they are infected by disease, although fears and anxieties can still be generated through sensational media coverage. Nevertheless, even in this molecular age, some transmissible diseases are still associated with sins of the flesh and can lead to social ostracisation.

Yeast colonies in an array. Each spot contains thousands of yeast cells. The plate shows synthetic lethal interactions when the interaction of 2 or more genes cause cell death (shown by colonies with reduced/no growth colonies). Image uploaded by Masur

There are still many diseases that generate fear because they are untreatable. Some of these have evolved through human activities, such as Bovine spongiform encepthalopathy (BSE) which gives rise to a human form of spongiform encepthalopathy called variant Creutzfeldt-Jakob Disease (CJD). The causative agent of BSE is a defective version of a protein called prion that is similar to one found in the brains of sheep with Scrapies. The prion protein is transmitted horizontically and causes disease through disrupting the normal function of the native protein. Studying the molecular mechanisms by which proteins change conformation to become prions in yeast has led to a greater understanding in the pathology of this disease. Many other human diseases, especially cancers, can be researched by studying molecular processes first in yeast.

Cancers arise when cells begin to divide abnormally due to mutations in DNA. Cancer research investigates the mechanisms that encourage these mutations to arise. The mechanism of cell division is often studied in fission yeast, Schizosaccharomyces pombe. Unlike Saccharomyces cerevisiae, which divides by budding, S. pombe divides symmetrically in a similar way to human cells. Fission yeast originates from Africa were it is found growing on banana skins and is used to ferment beer. Through research in this area scientists have reached many milestones in the mechanisms that have caused various cancers leading to greatly improved clinical treatments. Work yeast genetics has greatly contributed to our understanding of cell cycle research and has led to the award of a Nobel prize in 2001 to three scientists who led pioneering work in this area: Paul Nurse, for his work in S. pombe and human model systems; Leland Hartwell, for his work in S. cerevisiae; and Tim Hunt who used sea urchins as a model system. Researchers later found similar cell division genes in human genomes.

Scanning electron micrographs of Fission yeast (Schizosaccharomyces pombe). Image by David O Morgan.

In addition to investigating diseases, yeast is also used as a model system to research ageing. Saccharomyces cells can divide by budding a number of times but the new bud is always physiologically younger than the mother cell. Each cell produces about thirty buds depending on the environmental conditions and other factors. About thirty genes in yeast have already been found to be involved in ageing. The main factors seem to be related to metabolic capacity, resistance to stress, gene dysregulation and genetic stability. Encountering certain environments that would overload any of these factors would also affect longevity. For instance, excessive oxidative damage or radioactivity would lead to a high level of mutations that will reduce the number of times that a cell can bud. Excessive oxidation is associated with the consumption of calories; so caloric restriction should result in increased longevity. This has been demonstrated in yeast, limiting the amount of nutrients and carbohydrates available in growth medium leads to a longer generation time and life span.